Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Basic Res Cardiol ; 118(1): 20, 2023 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-37212935

RESUMEN

SMYD1, a striated muscle-specific lysine methyltransferase, was originally shown to play a key role in embryonic cardiac development but more recently we demonstrated that loss of Smyd1 in the murine adult heart leads to cardiac hypertrophy and failure. However, the effects of SMYD1 overexpression in the heart and its molecular function in the cardiomyocyte in response to ischemic stress are unknown. In this study, we show that inducible, cardiomyocyte-specific overexpression of SMYD1a in mice protects the heart from ischemic injury as seen by a > 50% reduction in infarct size and decreased myocyte cell death. We also demonstrate that attenuated pathological remodeling is a result of enhanced mitochondrial respiration efficiency, which is driven by increased mitochondrial cristae formation and stabilization of respiratory chain supercomplexes within the cristae. These morphological changes occur concomitant with increased OPA1 expression, a known driver of cristae morphology and supercomplex formation. Together, these analyses identify OPA1 as a novel downstream target of SMYD1a whereby cardiomyocytes upregulate energy efficiency to dynamically adapt to the energy demands of the cell. In addition, these findings highlight a new epigenetic mechanism by which SMYD1a regulates mitochondrial energetics and functions to protect the heart from ischemic injury.


Asunto(s)
Músculo Esquelético , Miocitos Cardíacos , Animales , Ratones , Cardiomegalia/metabolismo , Mitocondrias/metabolismo , Músculo Esquelético/metabolismo , Miocitos Cardíacos/metabolismo
2.
Diabetes ; 72(8): 1154-1160, 2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-37216640

RESUMEN

Lactate is an important metabolic substrate for sustaining brain energy requirements when glucose supplies are limited. Recurring exposure to hypoglycemia (RH) raises lactate levels in the ventromedial hypothalamus (VMH), which contributes to counterregulatory failure. However, the source of this lactate remains unclear. The current study investigates whether astrocytic glycogen serves as the major source of lactate in the VMH of RH rats. By decreasing the expression of a key lactate transporter in VMH astrocytes of RH rats, we reduced extracellular lactate concentrations, suggesting excess lactate was locally produced from astrocytes. To determine whether astrocytic glycogen serves as the major source of lactate, we chronically delivered either artificial extracellular fluid or 1,4-dideoxy-1,4-imino-d-arabinitol to inhibit glycogen turnover in the VMH of RH animals. Inhibiting glycogen turnover in RH animals prevented the rise in VMH lactate and the development of counterregulatory failure. Lastly, we noted that RH led to an increase in glycogen shunt activity in response to hypoglycemia and elevated glycogen phosphorylase activity in the hours following a bout of hypoglycemia. Our data suggest that dysregulation of astrocytic glycogen metabolism following RH may be responsible, at least in part, for the rise in VMH lactate levels. ARTICLE HIGHLIGHTS: Astrocytic glycogen serves as the major source of elevated lactate levels in the ventromedial hypothalamus (VMH) of animals exposed to recurring episodes of hypoglycemia. Antecedent hypoglycemia alters VMH glycogen turnover. Antecedent exposure to hypoglycemia enhances glycogen shunt activity in the VMH during subsequent bouts of hypoglycemia. In the immediate hours following a bout of hypoglycemia, sustained elevations in glycogen phosphorylase activity in the VMH of recurrently hypoglycemic animals contribute to sustained elevations in local lactate levels.


Asunto(s)
Hipoglucemia , Ácido Láctico , Ratas , Animales , Ácido Láctico/metabolismo , Ácido Láctico/farmacología , Glucógeno/metabolismo , Astrocitos/metabolismo , Ratas Sprague-Dawley , Hipoglucemia/metabolismo , Hipotálamo/metabolismo , Glucógeno Fosforilasa/metabolismo , Núcleo Hipotalámico Ventromedial/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA